What Are The Applications Of Solar Energy?




Solar energy is the most plentiful energy resource on the planet. 




The energy absorbed by the Earth from the sun in one hour is about equivalent to the energy needed for one year of human activity. 


Solar energy is widely used for power production, as previously stated. 

Solar technologies, according to the International Energy Agency (IEA), have the potential to reduce carbon dioxide emissions in the power sector by 14% by 2050, based on the BLUE Map scenario. 



Solar energy may be utilized for more than just power production; it can also be used for heating and desalination. 


Solar energy's primary benefits are its widespread availability and accessibility, but its intermittency makes prediction difficult. 

Solar energy may be harvested using a variety of methods and converted into the energy kinds needed. 





Solar Energy Production.




PV panels are used to convert solar irradiation directly into energy. 


Special kinds of semiconductors are utilized in PV cells. 

The energy for electron transport is provided by sun irradiation on the semiconductor, which results in an electrical current . 

Although several novel technologies, like as organic cells, are being explored, the most common kinds of PV technologies are crystalline and thin film. 

The IEA  estimates that crystalline silicone and thin film technologies account for 85 percent 90 percent and 10 percent 15 percent of the global PV cell market, respectively. 



Table 1.1 shows the efficiencies of PV cells depending on their technology. 




PV cell efficiencies are poor, as shown in Table 1.1; as a result, the produced power for each surface area is often low or insufficient. 

Concentrators may be used in conjunction with PV cells to solve this issue. 

Solar radiation is focused using optical instruments in this arrangement, increasing the amount of energy delivered to a particular region. 

When using concentrators, it is essential to lower the temperature of the PV cells since their performance degrades at high temperatures. 



Heat systems are combined with PV cells for cooling in such methods, as shown, by harvesting the absorbed thermal energy. 



The recovered thermal energy is sometimes sold as a byproduct. 

Temperature, solar irradiation, dust buildup, shadowing, and soiling of PV panels all influence the performance of PV cells in producing energy. 

The amount of energy generated by a PV cell is highly dependent on solar irradiation (solar power per unit of area). 

More energy is available for conversion to electricity when solar irradiation rises. 

In addition to solar irradiation, the temperature of the PV cell has an effect on the output power since it affects the cell's efficiency. 



Higher efficiency is usually achieved by lowering the cell's temperature. 


Because of the PV cell's significance in producing energy, many methods for thermal management of PV cells exist, including using water flow, phase change materials (PCMs), and heat pipes. 

The presence of grit or dust on the surface of PV cells may prevent sunlight from entering the cell, lowering the energy received and, as a result, lowering the output power. 

The dust reduction factor is usually equal to 0.93, which means that the input solar irradiation for a cell is reduced by 7% . 

Spraying water on the surface of PV cells is recommended to combat dirt and dust buildup, and it may also help with temperature management. 



Another unfavorable factor that reduces PV cell performance is shadowing. 


According to certain research, when 5-10% of a solar panel array is shaded, the produced energy may be decreased by up to 80%. 

In addition to direct techniques, certain technologies may be used to convert solar energy to electricity in an indirect manner. 



Solar energy is utilized to power thermal power plants in these technologies. 








Concentrators must be utilized to generate a large amount of thermal energy in a small amount of area. 

Concentrated solar power methods are divided into three categories: linear parabolic collector systems, solar towers, and parabolic dish collectors. 

A linear concentrator with a parabolic cross-sectional form makes up a linear parabolic collector. 

On a single axis, the concentrator's surface follows the path of the sun. 


This concentrator is mounted on a support structure, which keeps it stable and allows it to operate well in adverse circumstances like as wind. 





The received sunlight is concentrated on a tube along the focal point in these concentrators. 

There is a working fluid within the tube that gets heat from focused sun irradiation. 

The reflecting panels of parabolic dishes rotate along two orthogonal axes to follow the sun's path. 

The panels direct the sun's rays toward a receiver at the focal point. 

High-temperature thermal energy is transmitted to the working fluid by using these concentrators. 


Heliostats, or flat-surfaced reflecting panels, are used in solar tower systems to concentrate the sunlight. 


These panels spin on two axes, focusing solar energy on the receiver at the top of the tower, which is situated in the system's center. 

The concentrated solar energy is absorbed by the fluid within the solar receiver, which raises its temperature and pressure. 





To increase efficiency, solar thermal energy systems may be combined with existing thermal power plants. 



In certain gas turbine cycles, solar energy is used to pre-heat the compressed air that enters the combustion chamber, as illustrated below. 




In certain setups, the presence of a thermal energy storage unit may enhance the system's efficiency and allow it to operate at night. 

Solar energy may be utilized alone to generate electricity, in addition to hybrid systems that employ both fossil fuels and solar thermal energy. 

Solar energy is used in these systems to raise the temperature and pressure of air (or another working fluid) to levels suitable for use in a power generating turbine. 

To extract more energy per unit of area, solar concentrators are used. 

Heat recovery may increase the efficiency of these cycles. 



A schematic illustration of a Brayton cycle with heat recovery and intercooling units may be seen here. 





Other concepts, such as utilizing supercritical fluids and merging Brayton cycles with other cycles, such as Rankine cycles, have been used to improve the efficiency of these cycles in addition to heat recovery units. 

The primary thermal input to run the Rankine cycle in these setups comes from the gas turbine's output hot gases. 

These designs often have greater efficiency than basic Brayton cycles. 




Thermostats and air conditioners.



Around 2010, the proportion of energy consumption in the construction industry in global final energy utilization, which refers to final energy consumption by end users, was 35.3 percent. 



Renewable energy systems, particularly solar technology, may be utilized to supply energy for heating and cooling in a variety of industries. 

In order to gather, store, and distribute thermal energy to buildings, renewable-based heating technologies are utilized, while cooling systems are used to provide cooling capacity. 

Solar energy may be utilized to heat a building in a variety of ways, including a Trombe wall, an unglazed transpired solar façade, and a solar chimney. 

Trombe walls are made up of a huge wall, an air duct, and an exterior layer of glass. 



A Trombe wall is shown schematically here. 



The big wall is utilized to collect and store the energy of the sun that flows through the glass in these kinds of systems. 

A part of the absorbed heat is transmitted to the interior space through conductive and convective heat transfer processes. 

Furthermore, cold air enters the channels via a lower vent, is heated, and rises owing to the buoyancy effect before exiting the channel through an upper vent. 

An unglazed transpired solar façade is made out of metal sheet walls having holes in them, which are used to capture solar thermal energy and heat the building. 



A fan is employed to circulate the air flow, as illustrated below. 




A solar chimney works by turning thermal energy into kinetic energy, which is then used to circulate air. 


Other technologies for air heating in buildings, such as solar roofs, are available in addition to these techniques. 


The use of solar thermal energy in buildings is not restricted to air heating; it may also be utilized to heat water. 


In most instances, water is collected using collectors that face the sun. 

Many designs for solar water heating systems have been suggested, with direct and indirect water heating methods being the most common. 

Water passes through a collector and absorbs thermal energy in direct water heating systems, while heat exchangers are used to transmit the thermal energy of the applied collectors in indirect water heating systems. 




Solar energy may be used for cooling. 









In thermally driven cooling processes, solar cooling systems use the absorbed heat from sunshine. 


In these systems, there are two primary processes. 

Thermally powered sorption chillers are utilized in closed cycles to produce chilled water for use in space conditioning facilities. 

Water is often used as a refrigerant in open cycle solar cooling systems, and a desiccant is used as a sorbent for air purification in ventilation technologies. 

One of the most significant benefits of solar cooling systems over alternatives is their naturalness. 

Because the greatest needed cooling demand corresponds with the strongest sun irradiation, using these kinds of systems may reduce peak electrical demands on the electrical network as compared to traditional cooling systems. 

In addition, during cold seasons, solar cooling methods may be used for heating, including water heating. 




Desalination.





The development and use of desalination systems is necessitated by the rising trend in global population and the resulting rise in the demand for consumable freshwater. 


Desalination is a procedure that eliminates salt from salty feed-water, resulting in usable water for drinking and agricultural. 

Thermal and membrane technologies are the most common kinds of desalination systems. 

Around 73 percent of the world's desalination units were based on membrane technology as of the end of 2016, with the other ones being thermal. 

Both directly and indirectly, renewable energy technologies may be used for desalination. 

In general, direct techniques utilize the thermal energy of renewable energy sources for water evaporation and salt removal, while indirect techniques use renewable energy sources to produce the necessary power for membrane technology. 





For desalination plants, solar energy is one of the most appealing renewable energy sources. 


The sun provides the heat needed for saline water evaporation in thermal desalination systems. 

Solar thermal desalination systems that use thermal energy storage units like PCMs can operate at night. 

Despite the fact that using thermal storage to enhance the efficiency of solar thermal desalination units has increased their prices, they are still economically viable for large-scale systems. 

Solar energy may be used for indirect water desalination in addition to thermal desalination devices. 

Membrane-based desalination machines utilize energy produced by PV panels or solar thermal power plants in these kinds of desalination systems.



~ Jai Krishna Ponnappan


You may also read more about Green Technologies and Renewable Energy Systems here.











What Are Renewable Energy Sources?





As illustrated, global total primary energy consumption has been rising over the past decade. 


As shown below, fossil fuels such as oil, coal, and natural gas currently account for the majority of electricity generation. 




However, as a result of concerns about the environmental issues associated with fossil fuels, as well as their finite nature and potential future depletion, renewable energy sources are gradually taking their place. 




Renewable energy sources include wind, solar, geothermal, and biomass, among others. 



Heating, cooling, power production, and desalination are just a few of the uses for them. 

Renewable energy sources play a significant role in meeting global heating and cooling demands, accounting for roughly 10% of total demand in 2016. 

Solar collectors or geothermal heat exchangers may often be used for heating. 

The thermal energy of renewable sources may be used for desalination units in addition to heating. 

The absorbed thermal energy is used in renewable desalination systems to evaporate saline water and produce fresh water. 



Despite the fact that renewable energy sources may be used for a variety of purposes, current advances in renewable energy sources have mostly focused on power production. 



According to the REN21 study, the worldwide capacity of renewable energy power plants increased by 181 GW in 2018. 

Solar photovoltaic (PV) panels, with about 100 GW of installed capacity, represent the largest proportion of worldwide installed renewable energy systems during this time period, followed by wind turbines with about 50 GW. 



Both directly and indirectly, renewable energy technologies may be utilized to generate power. 


PV panels, for example, are used to convert solar energy directly to electricity, while the thermal energy of renewable sources is sometimes transferred to power plants via thermal processes such as the Brayton and Rankine cycles. 

The efficiency of renewable energy systems for electricity generation is determined by a number of factors, including the technology used as well as geographic and environmental conditions.


~ Jai Krishna Ponnappan


You may also read more about Green Technologies and Renewable Energy Systems here.




Quantum Revolution 2.0 Epilogue - In the year 2050

 



 Markus, who was born in the year 2020, is sleeping a little longer today. 

His 30th birthday has arrived. 

His fMRT alarm clock interacts with Markus's subconscious by logging into his dream and allowing it to become lucid (with lucid dreams, the dreamer is aware that he is dreaming). 

Markus emerges from the REM period as fresh as possible, according to the system's long-ago calculation of the optimum wake-up time. 

The nanobots in his body monitor the latest developments on potential inflammations, vascular plaques, or cell alterations just before he wakes up. 

The info appears on Markus' nano-retina as soon as he opens his eyes. 

His breakfast consists of a butter croissant and jam, like it does every morning. 

Nanobots have become active once again. 

All unnecessary sugar and fat molecules have been eliminated, and essential vitamins, trace minerals, and dietary fibre have been added in their stead. 

The fact that the croissants still taste as buttery as they did forty years ago may also be attributed to the nanobots' abilities. 

They use the right neuro-signals to activate Markus' taste buds. 

The kitchen is eerily quiet. 

Appliances and materials for the kitchen are no longer required. 

What was formerly a tiny oven that was ideally suited to the size of the roast has now been transformed into a toaster. 

This is made feasible through the use of nanoparticle-based programmable matter. 

Markus puts the almost fat-free butter on his croissant carefully. 

Markus is immediately linked to the internet through his retina implant and a microchip in his brain, which transmits messages customized to his interests straight into his brain. 

Markus's tastes, ranging from his favorite football team to his political beliefs, are better known to the AI running on quantum computers, which has been taught and tailored for him and his personality. 

Because it has kept track of every detail of his life and is constantly running algorithms to improve his well-being. 

The conversation between Markus and his AI is, of course, bidirectional. 

He expresses his desire to learn more about the Middle East conflict via his ideas. 

He instantly gets the necessary information, which is delivered to the proper neurons in his brain through suitable impulses, allowing him to not only see but also smell, taste, and hear the smoke and gunshots. 

He recognized the rainforest scene on the wall as the one that lulled him to sleep the night before. 

The scent of dampness is still in his nose, or rather, in the relevant neurons in his brain's olfactory bulb. 

He likes a beach this morning, so he makes his wish. 

Immediately, a tropical coral reef appears in front of him, complete with ocean noises and scents. 

Perceptions are produced directly in his brain, or rather within him. 

When he uses Brainchat, the new brain-to-brain program, to communicate with his love Iris, his AI informs him that an unauthorized individual is listening in on his quantum communication channel. 

The program gives you the option of changing the encryption or switching to a different channel. 

The news article that has been playing in his head has altered. 

He's now listening in on a debate on the abolition of money. 

The value of ownership has shifted dramatically in recent years. 

There are no longer any rare products worth spending money on. 

With 3D printers, even the most basic materials can be made into anything. 

All desired emotions and sensations may be generated directly in the brain via appropriate neuro-stimulation. 

Representatives of the new socialist movement urge that all software for printing and converting goods be made freely available. 

Alphabet and Dodax (formed in 2029 following the merging of Facebook and Microsoft), the only surviving software firms from the information era in the first 20 years of the twenty-first century, continue to resist. 

However, their cause has long since been abandoned. 

The free market economy has lost its luster. 

Everything that humans need may be found in the form of software. 

All they have to do now is print things out or load the necessary software into the physical devices. 

Previously, software needed the use of specific devices known as computers. 

They were both costly and rigid. 

But 10 years ago, when the technical issue of decoherence of entangled quantum systems had been addressed, quantum computer software was created and immediately integrated into objects, for virtually any type of matter. 

Quantum computers allowed individual atoms in a material combination to be controlled in such a manner that they could be combined to create any energetically feasible shape. 

All that was required was the right software. 

In parliament, the New Socialists, who evolved from the Social Democratic movement in 2041, currently have a two-thirds majority. 

They want to make free access to all software a fundamental right for all citizens, according to their electoral program. 

Alphabet and Dodax would be extinct. 

However, it might not be such a terrible thing, and this is the current debate's tone.


It would be like to the last dinosaurs becoming extinct. 

Markus returns to his passion of creating new animal and plant species via genetic engineering. 

He hasn't had a paid work in years, and most of his pals have also lost their jobs. 

At the press of a button, he has access to almost everything he needs (and, eventually, almost everything). 

Almost everything is taken care of by AI-enabled devices and nanobots. 

There is no longer any need to work for a living. 

Money as a means of trade has lost its significance, and the next generation will struggle to comprehend why it was once so essential. 

Markus shivers as he recalls previous times when he had to consider if he could afford to purchase the newest model of electric vehicle and struggled to repay his debts. 

As he leans over his little CRISPR gadget, he wonders if his brain chip, which links him to the central AI, was designed to have such a strong dislike for previous eras. 

But then he grins to himself and returns his attention to the orange color of the moss he intends to use to cover his walls.



~ Jai Krishna Ponnappan


You may also want to read more about Quantum Computing here.




Quantum Revolution 2.0 - Our First Civic Duty Is to Educate Ourselves.



One thing is certain: future quantum technologies will profoundly alter the planet. 


As a result, our current choices have a lot of clout. 

The scientific underpinnings for current car, rail, and air traffic, as well as modern communication and data processing, were established in the eighteenth and nineteenth centuries, and the foundations for the wonder technologies of the twenty-first century are being created now. 



There is just a short window of opportunity before technology and social norms become so entrenched that we won't be able to reverse them. 


This is why an active, wide-ranging social, and, of course, democratic debate is so critical. 

The ethical assessment and political molding of future technologies must go beyond individual, corporate, or governmental economic or military objectives. 

This will require a democratic commitment from everyone of us, including the responsibility to educate ourselves and share ideas. 

It should also be a requirement of ours that the media offer thorough coverage of scientific advances and advancements. 



When journalists and others who shape public opinion report on global events and significant social changes, there is much too little mention of physics, chemistry, or biology. 


In addition to ethical integrity, we must expect intellectual honesty from politicians and other social and economic decision-makers. 

This implies that intentional lies, as well as information distortion and filtering for the aim of imposing certain objectives, must be constantly combated. 

It is intolerable that false news can wield such devastating propagandistic influence these days, and that a worrying proportion of politicians, for example, continue to genuinely question climate change and Darwin's theory of evolution. 

The commandment of intellectual honesty, however, also applies to those who receive knowledge. 

We must learn to think things through before jumping to conclusions, to examine our own biases, and to participate in complicated interrelationships without oversimplifying everything. 



Last but not least, we must accept uncomfortable facts. 


Every citizen's role in influencing our technological future is to aim for a wide, reasonable, information- and fact-based debate. 

It will be beneficial to keep a careful eye on the progress of quantum physics research. 

The unique characteristics of the quantum universe are becoming an essential part of our daily lives, and we are seeing a watershed point in human history. 

Those who do not pay attention risk losing out and discovering what has occurred after it is too late. 


Our current knowledge of entanglement offers us a peek of what may be possible in the not-too-distant future of technology. However, the future has already started. 


~ Jai Krishna Ponnappan


You may also want to read more about Quantum Computing here.








Quantum Revolution 2.0 - Who's in Charge?




 A number of social actors come to mind as candidates for guiding technology development in a manner that is consistent with our human values. 


However, if they were the only designers, two of the most often cited social players would certainly be overwhelmed: 


The ability of social decision-makers (politicians, corporate leaders, media workers, and others) to respond to the ever-accelerating dynamics of technological change is much too sluggish. 

This is due to a lack of understanding among our political, economic, and cultural leaders of the present level of scientific research, among other things. 

Scientists will be unable to regulate technological development as well. In reality, the reverse is true. 

They, like all other members of society, are primarily guided by market logic. 

If they create new technology based on their ideas, they might become millionaires today. 


Furthermore, they are constantly reliant on the government or other organizations to provide funding for their study. 

The free market is a third socially productive force. 

Until now, technology advancement has almost entirely followed the logic of market-based (or military) application. 

To put it another way, whatever was feasible and provided someone a financial (or military) edge was done. 


Can we expect that the processes of free market competition will best regulate technological development for the greater good? 


Allowing the free market to determine development would imply that Google, Facebook, and Amazon would decide whether quantum computers or greater artificial intelligence would be used. 

Even the most ardent advocates of free market philosophy may find it difficult to believe that this will work out nicely for all of us. 


In reality, when it comes to ethical problems, the market is a terrible arbitrator. 


To determine how much of future technology development should be left to the free market, we must first understand and identify the factors that prevent it from making the optimal choices for society as a whole. 


Aside from the possibility of billions of dollars in commerce, which would almost certainly lead to insurmountable conflicts of interest, there are additional issues with blindly trusting the forces of the free market: 


1. Externalities: 


One group's economic actions may have an effect on other groups—possibly even all individuals on the planet—without the actors bearing the full cost. 

Externalities are most noticeable in public products that do not have a market price. 

Environmental resources and general health are examples of this. 


Some examples include: 

• polluting the environment still costs the polluter little or nothing; 

• climate-damaging CO2 emissions are still not associated with higher costs for producers; 

• the safety risks associated with nuclear power generation or natural gas fracking are largely borne by the general public; and 

• while the widespread use of antibiotics in agriculture produces higher yields for livestock.


2. Rent-seeking: 

Powerful groups often succeed in altering political and economic norms to their own benefit, resulting in different kinds of governmental guarantees that do not improve or even worsen general societal well-being. 

Corruption is the most apparent example. 


3. Asymmetries in information: 

In 1970, economist Georg Akerlof demonstrated in his article "The Market for Lemons" that free markets cannot operate effectively unless buyers and sellers have equal access to information.


However, significant information access asymmetries can be found in a variety of markets, including the labor market, the market for financial products (which allows banks to charge exorbitant fees for their investment products), the healthcare and food markets, the energy market, and, most importantly in our context, the market for new scientific knowledge and technologies. 

Anyone who wishes to balance the benefits of a new technology against its dangers must first learn all there is to know about it. 

The creator and producer, on the other hand, are the ones who know the most about it, and they are more interested in the possibilities for profit than the dangers. 

In a free market system, lying is simply part of the game for profit-driven businesses. 

This involves spreading doubt about accepted scientific knowledge on a systematic basis. 

Akerloff was subsequently given the Nobel Prize in Economics in 2001 for this discovery. 


4. Cognitive Irrationalities: 

Standard economic theory implies that we are aware of our own best interests. 

Behavioral economics, on the other hand, has long shown that humans are much less reasonable than proponents of the free market would have us think. 

As a result, rather than long-term logical concerns, producers and consumers are often driven by short-term emotional impulses. 

These are the four reasons why the free market is inadequate for directing socially acceptable technology development. 

The exploitation logic of capitalism is a powerful force that works against distinction and ethical thought in the creation and use of new technology. 



~ Jai Krishna Ponnappan


You may also want to read more about Quantum Computing here.







Quantum Revolution 2.0 - Welcome to the Fast and Furious New World



Huxley portrays an unsettling future scenario in his landmark book about a human civilization made up of several classes of genetically modified people. 



Everyone's social position is established at birth as a result of genetic modification; the hierarchy comprises five classes of people, ranging from alpha to epsilon. 


The ruling caste is made up of Alpha humans, while the Epsilons, who are solely employed for basic jobs, have their intellect artificially lowered to a minimum. 

Because he estimated it would take more than 600 years for such a situation to become technologically possible, Huxley puts his terrifying scenario in the year 2540. 

(the social acceptance of such a world did not appear as far-fetched in the 1930s). 

Modern genome editing techniques, however, make this scenario seem much more technologically plausible today, less than 90 years after the book was written. 



Brave New World, by Aldous Huxley, is set 600 years in the future. 


However, less than a century after his publication, an execution of the situation he outlined seems technologically feasible. 

Many futuristic possibilities from the last century or so are no longer science fiction dreams. 

The scientific foundation for all of the technologies listed below is presently being developed in labs across the globe. 



Here is a sampling of quantum technology advancements: 


Health

  • Nanobots will be employed as molecular robots and super-small tracking devices. 
  • They will travel about within the body, detecting and treating cancer cells, vascular plaques, and infections as early as possible. 

Mind and body enhancement: 

  • Nanoparticle-based artificial body components, such as an artificial nano retina, will be able to increase our sensory perceptions and physical skills. 
  • Our cognitive and communicative abilities will improve as a result of the use of brain chips. 

Artificial intelligence in new dimensions: 

  • "Quantum Machine Learning" will integrate quantum physics with cutting-edge machine-learning methods to create artificial intelligence that will outperform human cognitive skills in ways that humans will be unable to understand. 

Goods production: 

  • A "quantum 3D printer" will be capable of arranging individual atoms in virtually any manner imaginable—for example, from a handful of dust—at the press of a button or even by mind control. 
  • Matter may be transformed into whole new shapes and functions because to this precise atomic organization. 
  • Programmable, intelligent materials will pervade our daily lives in the same way that plastic cups and metal gadgets do now. 
  • You don't like your flat any longer? Could be a future advertising slogan. Within a day, we may program a new one for you. 

Economics: If matter can be manipulated almost without restriction—for example, by printing food or programming it to take on almost any properties—everyone will get what they want right away, and a lack or scarcity of goods and resources would have a significant impact on the economy and society as a whole. 



What would it be like to live in an economy where ownership is no longer a factor? 

What tasks would be required? 

Would everyone be socially equal as a result? 

 

Future quantum technologies, such as a sort of man-machine coalescence, would radically alter our perceptions of personal belongings and social status, health, and, ultimately, ourselves. 




All of the fascinating, promising, and terrifying potential of future quantum technologies (as well as all other technologies) pose a lot of questions:



  • Will we be able to regulate quantum computers' infinite processing power? 
  • What happens if an artificial intelligence emerges that outperforms humans across the board, not just in certain cognitive areas but in all? 
  • And do we really want nanobots to be able to communicate with our brains? 



Finding solutions to the following questions will be the primary challenge: 


  • How can technology development be planned in such a way that it does not overwhelm us? 
  • And how will we deal with the looming societal tensions? 


If the prospect of controlling the destiny of humanity and our civilization via Quantum Technology 2.0, Genetic Engineering, and AI is scary, the prospect of having this technical power and being unable to manage it is much worse. 

How we cope with ethical and social problems that emerge as a result of technological development will decide the future of our individual dignity and freedom, and eventually of humanity as a whole. 


Who, on the other hand, might be in charge of steering our knowledge and technological innovation in socially acceptable directions? 




~ Jai Krishna Ponnappan


You may also want to read more about Quantum Computing here.






Quantum Revolution 2.0 - The Mighty Trio



Overall, three key technical fields will have a significant impact on our civilization in the near future: genetic engineering, artificial intelligence (AI), and quantum technology 2.0. 



Artificial intelligence and gene technology are generally considered as dangerous, and the debate over their usage and effect is in full gear. 


In reality, these technologies have the potential to transform not just our daily lives, but also humanity itself. 

They might, for example, be used to combine people and machines in the future to enhance our capacities by merging our cognitive skills with machine computing and physical performance. 

However, machine intelligence superior to ours in general cognitive skills, not only in mathematics, chess, or Go, is possible. 

However, quantum technologies 2.0 (such as quantum computers and nanomaterials) are now just a hazy blip on the radar of people concerned about the social effect of emerging technology. 

At the same time, the three technologies described before are inextricably linked. 

They will cross-fertilize each other, resulting in a considerably greater effect when combined. 



New quantum technologies, for example, have the potential to improve AI and genetic engineering significantly: 


• The processing power of quantum computers may help AI researchers enhance neural network optimization methods once again. 

• Nanomachines might reproduce themselves using a handbook provided by humans and enhance these instructions using genetic algorithms on their own. 

• Using smart nanobots as a genetic editing engine, we might actively alter our DNA to repair and enhance it indefinitely. 


The main issue is deciding who will be responsible for determining what constitutes an optimization.




Quantum Technology 2.0's effect has been grossly overestimated. 



Its contribution to the advancement of artificial intelligence, as well as its prospective use in genetic engineering, will be critical. 

The debate of the possible health risks of nanoparticles in human bodies is still the primary focus of emerging quantum technologies today. 

This odd rejection of quantum technology's potential isn't completely innocuous. 

This blind hole is exacerbated by another cognitive bias: we've become used to the notion that technological development is accelerating, but we underestimate its absolute pace. 


Aldous Huxley's renowned 1932 book Brave New World is an example of this. 



What Is Artificial General Intelligence?

Artificial General Intelligence (AGI) is defined as the software representation of generalized human cognitive capacities that enables the ...