Showing posts with label Technological Singularity. Show all posts
Showing posts with label Technological Singularity. Show all posts

Artificial Intelligence - Who Is Peter Diamandis?



Peter Diamandis (1961–) is a Harvard medical doctor who also has an MIT degree in aeronautical engineering.

He's also a serial entrepreneur, having created or cofounded twelve businesses, the most of which are still operational today, including International Space University and Singularity University.

The XPRIZE Foundation is his idea, and it hosts challenges in futuristic fields including space technology, low-cost mobile medical diagnostics, and oil spill cleanup.

Singularity University, which trains CEOs and graduate students on exponentially developing technology, is chaired by him.

The major difficulties that mankind faces are the focus of Diamandis' work.

His interests were first solely centered on space travel.

He believed that mankind should be a multiplanetary species when he was a teenager.

When he recognized that the US government was unwilling to fund NASA's lofty ambitions for colonization of other planets, he selected the private sector as the new space engine.

He launched many not-for-profit start-ups while still a student at Harvard and MIT, including International Space University (1987), which is now situated in France.

International Microspace, a for-profit microsatellite launcher, was created by him in 1989.

In 1992, Diamandis founded Zero Gravity, a firm dedicated to provide consumers with the sensation of weightlessness via parabolic flights.

Stephen Hawking is the most renowned of the 12,000 clients who have experienced zero gravity thus far.

In 2004, he established the XPRIZE Foundation, which is essentially a large incentive reward (five to ten million dol lars).

Diamandis and Ray Kurzweil cofounded Singularity University in 2008 to teach individuals how to conceive in terms of exponential technologies and to assist entrepreneurs use exponential technologies to solve humanity's most urgent challenges.

Planetary Resources, an asteroid mining firm that promises to create low-cost spacecraft, was established by him in 2012.

Diamandis is often referred to as a futurist.

If that's the case, he's a unique kind of futurist, since he doesn't extrapolate patterns or make intricate prophecies.

Diamandis' primary task is matchmaking: he finds major issues on the one hand and then connects them to viable remedies on the other.

He has developed incentive prizes and a network of influential billionaires to fund such prizes in order to uncover viable answers.

Larry Page, James Cameron, and the late Ross Perot are among the billionaires who have backed Diamandis' endeavors.

Diamandis began by focusing on the difficulty of getting humans into space, but over the last three decades, he has broadened his focus to include all of humanity's big concerns in exploration, including space and seas, life sciences, education, global development, energy, and the environment.

The next frontier for Diamandis is increased longevity, or living longer.

He believes that the causes of early mortality may be eliminated, and that the general people can live longer and healthier lives.

He also thinks that a person's mental peak may be extended by 20 years.

In 2014, Diamandis founded Human Longevity, a biotechnology business based in San Diego, alongside genomics specialist Craig Venter and stem cell pioneer Robert Hariri to tackle the challenge of longevity.

Four years later, he cofounded Celularity, a longevity-focused firm that offers stem cell-based antiaging therapies, alongside Hariri.



~ Jai Krishna Ponnappan

You may also want to read more about Artificial Intelligence here.



See also: 


Kurzweil, Ray; Technological Singularity.


Further Reading:


Diamandis, Peter. 2012. Abundance: The Future Is Better Than You Think. New York: Free Press.

Guthrie, Julian. 2016. How to Make a Spaceship: A Band of Renegades, an Epic Race, and the Birth of Private Spaceflight. New York: Penguin Press.




Artificial Intelligence - Who Is Hugo de Garis?

 


Hugo de Garis (1947–) is an expert in genetic algorithms, artificial intelligence, and topological quantum computing.

He is the creator of the concept of evolvable hardware, which uses evolutionary algorithms to produce customized electronics that can alter structural design and performance dynamically and autonomously in response to their surroundings.

De Garis is most known for his 2005 book The Artilect Battle, in which he describes what he thinks will be an unavoidable twenty-first-century worldwide war between mankind and ultraintelligent robots.

In the 1980s, De Garis got fascinated in genetic algorithms, neural networks, and the idea of artificial brains.

In artificial intelligence, genetic algorithms include the use of software to model and apply Darwinian evolutionary ideas to search and optimization issues.

The "fittest" candidate simulations of axons, dendrites, signals, and synapses in artificial neural networks were evolved using evolutionary algorithms developed by de Garis.

De Garis developed artificial neural systems that resembled those seen in organic brains.

In the 1990s, his work with a new type of programmable computer chips spawned the subject of computer science known as evolvable hardware.

The use of programmable circuits allowed neural networks to grow and evolve at high rates.

De Garis also started playing around with cellular automata, which are mathematical models of complex systems that emerge generatively from basic units and rules.

The coding of around 11,000 fundamental rules was required in an early version of his modeling of cellular automata that acted like brain networks.

About 60,000 such rules were encoded in a subsequent version.

De Garis called his neural networks-on-a-chip a Cellular Automata Machine in the 2000s.

De Garis started to hypothesize that the period of "Brain Building on the Cheap" had come as the price of chips dropped (de Garis 2005, 45).

He started referring to himself as the "Father of Artificial Intelligence." He claims that in the future decades, whole artificial brains with billions of neurons will be built utilizing information acquired from molecular scale robot probes of human brain tissues and the advent of new path breaking brain imaging tools.

Topological quantum computing is another enabling technology that de Garis thinks will accelerate the creation of artificial brains.

He claims that once the physical boundaries of standard silicon chip manufacturing are approached, quantum mechanical phenomena must be harnessed.

Inventions in reversible heatless computing will also be significant in dissipating the harmful temperature effects of tightly packed circuits.

De Garis also supports the development of artificial embryology, often known as "embryofacture," which involves the use of evolutionary engineering and self-assembly methods to mimic the development of fully aware beings from single fertilized eggs.

According to De Garis, because to fast breakthroughs in artificial intelligence technology, a conflict over our last innovation will be unavoidable before the end of the twenty-first century.

He thinks the battle will finish with a catastrophic human extinction catastrophe he refers to as "gigadeath." De Garis speculates in his book The Artilect War that continued Moore's Law doubling of transistors packed on computer chips, accompanied by the development of new technologies such as femtotechnology (the achievement of femtometer-scale struc turing of matter), quantum computing, and neuroengineering, will almost certainly lead to gigadeath.

De Garis felt compelled to create The Artilect War as a cautionary tale and as a self-admitted architect of the impending calamity.

The Cosmists and the Terrans are two antagonistic worldwide political parties that De Garis uses to frame his discussion of an impending Artilect War.

The Cosmists will be apprehensive of the immense power of future superintelligent machines, but they will regard their labor in creating them with such veneration that they will experience a near-messianic enthusiasm in inventing and unleashing them into the world.

Regardless of the hazards to mankind, the Cosmists will strongly encourage the development and nurturing of ever-more sophisticated and powerful artificial minds.

The Terrans, on the other hand, will fight against the creation of artificial minds once they realize they represent a danger to human civilization.

They will feel compelled to fight these artificial intelligences because they constitute an existential danger to humanity.

De Garis dismisses a Cyborgian compromise in which humans and their technological creations blend.

He thinks that robots will grow so powerful and intelligent that only a small percentage of humanity would survive the confrontation.

China and the United States, geopolitical adversaries, will be forced to exploit these technology to develop more complex and autonomous economies, defense systems, and military robots.

Artificial intelligence's dominance in the world will be welcomed by the Cosmists, who will come to see them as near-gods deserving of worship.

The Terrans, on the other hand, will fight the transfer of global economic, social, and military dominance to our machine overlords.

They will see the new situation as a terrible tragedy that has befallen humanity.

His case for a future battle over superintelligent robots has sparked a lot of discussion and controversy among scientific and engineering specialists, as well as a lot of criticism in popular science journals.

In his 2005 book, de Garis implicates himself as a cause of the approaching conflict and as a hidden Cosmist, prompting some opponents to question his intentions.

De Garis has answered that he feels compelled to issue a warning now because he thinks there will be enough time for the public to understand the full magnitude of the danger and react when they begin to discover substantial intelligence hidden in household equipment.

If De Garis' warning is taken seriously, he presents a variety of eventualities.

First, he suggests that the Terrans may be able to defeat Cosmist thinking before a superintelligence takes control, though this is unlikely.

De Garis suggests a second scenario in which artilects quit the earth as irrelevant, leaving human civilisation more or less intact.

In a third possibility, the Cosmists grow so terrified of their own innovations that they abandon them.

Again, de Garis believes this is improbable.

In a fourth possibility, he imagines that all Terrans would transform into Cyborgs.

In a fifth scenario, the Terrans will aggressively seek down and murder the Cosmists, maybe even in outer space.

The Cosmists will leave Earth, construct artilects, and ultimately vanish from the solar system to conquer the cosmos in a sixth scenario.

In a seventh possibility, the Cosmists will flee to space and construct artilects that will fight each other until none remain.

In the eighth scenario, the artilects will go to space and be destroyed by an alien super-artilect.

De Garis has been criticized of believing that The Terminator's nightmarish vision would become a reality, rather than contemplating that superintelligent computers may just as well bring world peace.

De Garis answered that there is no way to ensure that artificial brains operate ethically (humanely).

He also claims that it is difficult to foretell whether or not a superintelligence would be able to bypass an implanted death switch or reprogram itself to disobey orders aimed at instilling human respect.

Hugo de Garis was born in 1947 in Sydney, Australia.

In 1970, he graduated from Melbourne University with a bachelor's degree in Applied Mathematics and Theoretical Physics.

He joined the global electronics corporation Philips as a software and hardware architect after teaching undergraduate mathematics at Cambridge University for four years.

He worked at locations in the Netherlands and Belgium.

In 1992, De Garis received a doctorate in Artificial Life and Artificial Intelligence from the Université Libre de Bruxelles in Belgium.

"Genetic Programming: GenNets, Artificial Nervous Systems, Artificial Embryos," was the title of his thesis.

De Garis directed the Center for Data Analysis and Stochastic Processes at the Artificial Intelligence and Artificial Life Research Unit at Brussels as a graduate student, where he explored evolutionary engineering, which uses genetic algorithms to develop complex systems.

He also worked as a senior research associate at George Mason University's Artificial Intelligence Center in Northern Virginia, where he worked with machine learning pioneer Ryszard Michalski.

De Garis did a postdoctoral fellowship at Tsukuba's Electrotechnical Lab.

He directed the Brain Builder Group at the Advanced Telecommunications Research Institute International in Kyoto, Japan, for the following eight years, while they attempted a moon-shot quest to develop a billion-neuron artificial brain.

De Garis returned to Brussels, Belgium, in 2000 to oversee Star Lab's Brain Builder Group, which was working on a rival artificial brain project.

When the dot-com bubble burst in 2001, De Garis' lab went bankrupt while working on a life-size robot cat.

De Garis then moved on to Utah State University as an Associate Professor of Computer Science, where he stayed until 2006.

De Garis was the first to teach advanced research courses on "brain building" and "quantum computing" at Utah State.

He joined Wuhan University's International School of Software in China as Professor of Computer Science and Mathematical Physics in 2006, where he also served as the leader of the Artificial Intelligence group.

De Garis kept working on artificial brains, but he also started looking into topological quantum computing.

De Garis joined the advisory board of Novamente, a commercial business that aims to develop artificial general intelligence, in the same year.

Two years later, Chinese authorities gave his Wuhan University Brain Builder Group a significant funding to begin building an artificial brain.

The China-Brain Project was the name given to the initiative.

De Garis relocated to Xiamen University in China in 2008, where he ran the Artificial Brain Lab in the School of Information Science and Technology's Artificial Intelligence Institute until his retirement in 2010.



~ Jai Krishna Ponnappan

You may also want to read more about Artificial Intelligence here.


See also: 


Superintelligence; Technological Singularity; The Terminator.


Further Reading:


de Garis, Hugo. 1989. “What If AI Succeeds? The Rise of the Twenty-First Century Artilect.” AI Magazine 10, no. 2 (Summer): 17–22.

de Garis, Hugo. 1990. “Genetic Programming: Modular Evolution for Darwin Machines.” In Proceedings of the International Joint Conference on Neural Networks, 194–97. Washington, DC: Lawrence Erlbaum.

de Garis, Hugo. 2005. The Artilect War: Cosmists vs. Terrans: A Bitter Controversy Concerning Whether Humanity Should Build Godlike Massively Intelligent Machines. ETC Publications.

de Garis, Hugo. 2007. “Artificial Brains.” In Artificial General Intelligence: Cognitive Technologies, edited by Ben Goertzel and Cassio Pennachin, 159–74. Berlin: Springer.

Geraci, Robert M. 2008. “Apocalyptic AI: Religion and the Promise of Artificial Intelligence.” Journal of the American Academy of Religion 76, no. 1 (March): 138–66.

Spears, William M., Kenneth A. De Jong, Thomas Bäck, David B. Fogel, and Hugo de Garis. 1993. “An Overview of Evolutionary Computation.” In Machine Learning: ECML-93, Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence), vol. 667, 442–59. Berlin: Springer.


Artificial Intelligence - Who Is Nick Bostrom?

 




Nick Bostrom(1973–) is an Oxford University philosopher with a physics and computational neuroscience multidisciplinary academic background.

He is a cofounder of the World Transhumanist Association and a founding director of the Future of Humanity Institute.

Anthropic Bias (2002), Human Enhancement (2009), Superintelligence: Paths, Dangers, Strategies (2014), and Global Catastrophic Risks (2014) are among the works he has authored or edited (2014).

Bostrom was born in the Swedish city of Helsingborg in 1973.

Despite his dislike of formal education, he enjoyed studying.

Science, literature, art, and anthropology were among his favorite interests.

Bostrom earned bachelor's degrees in philosophy, mathematics, logic, and artificial intelligence from the University of Gothenburg, as well as master's degrees in philosophy and physics from Stockholm University and computational neuroscience from King's College London.

The London School of Economics gave him a PhD in philosophy.

Bostrom is a regular consultant or contributor to the European Commission, the United States President's Council on Bioethics, the CIA, and Cambridge University's Centre for the Study of Existential Risk.

Bostrom is well-known for his contributions to a variety of subjects, and he has proposed or written extensively on a number of well-known philosophical arguments and conjectures, including the simulation hypothesis, existential risk, the future of machine intelligence, and transhumanism.

Bostrom's concerns in the future of technology, as well as his discoveries on the mathematics of the anthropic bias, are combined in the so-called "Simulation Argument." Three propositions make up the argument.

The first hypothesis is that almost all civilizations that attain human levels of knowledge eventually perish before achieving technological maturity.

The second hypothesis is that most civilizations develop "ancestor simulations" of sentient beings, but ultimately abandon them.

The "simulation hypothesis" proposes that mankind is now living in a simulation.

He claims that just one of the three assertions must be true.

If the first hypothesis is false, some proportion of civilizations at the current level of human society will ultimately acquire technological maturity.

If the second premise is incorrect, certain civilizations may be interested in continuing to perform ancestor simulations.

These civilizations' researchers may be performing massive numbers of these simulations.

There would be many times as many simulated humans living in simulated worlds as there would be genuine people living in real universes in that situation.

As a result, mankind is most likely to exist in one of the simulated worlds.

If the second statement is true, the third possibility is also true.

It's even feasible, according to Bostrom, for a civilization inside a simulation to conduct its own simulations.

In the form of an endless regress, simulations may be living within simulated universes, inside their own simulated worlds.

It's also feasible that all civilizations would vanish, maybe as a result of the discovery of a new technology, posing an existential threat beyond human control.

Bostrom's argument implies that humanity is not blind to the truth of the external world, an argument that can be traced back to Plato's conviction in the existence of universals (the "Forms") and the capacity of human senses to see only specific examples of universals.

His thesis also implies that computers' ability to imitate things will continue to improve in terms of power and sophistication.

Computer games and literature, according to Bostrom, are modern instances of natural human fascination with synthetic reality.

The Simulation Argument is sometimes mistaken with the restricted premise that mankind lives in a simulation, which is the third argument.

Humans, according to Bostrom, have a less than 50% probability of living in some kind of artificial matrix.

He also argues that if mankind lived in one, society would be unlikely to notice "glitches" that revealed the simulation's existence since they had total control over the simulation's operation.

Simulator creators, on the other hand, would inform people that they are living in a simulation.

Existential hazards are those that pose a serious threat to humanity's existence.

Humans, rather than natural dangers, pose the biggest existential threat, according to Bostrom (e.g., asteroids, earthquakes, and epidemic disease).

He argues that artificial hazards like synthetic biology, molecular nanotechnology, and artificial intelligence are considerably more threatening.

Bostrom divides dangers into three categories: local, global, and existential.

Local dangers might include the theft of a valuable item of art or an automobile accident.

A military dictator's downfall or the explosion of a supervolcano are both potential global threats.

The extent and intensity of existential hazards vary.

They are cross-generational and long-lasting.

Because of the amount of lives that might be spared, he believes that reducing the danger of existential hazards is the most essential thing that human beings can do; battling against existential risk is also one of humanity's most neglected undertakings.

He also distinguishes between several types of existential peril.

Human extinction, defined as the extinction of a species before it reaches technological maturity; permanent stagnation, defined as the plateauing of human technological achievement; flawed realization, defined as humanity's failure to use advanced technology for an ultimately worthwhile purpose; and subsequent ruination, defined as a society reaching technological maturity but then something goes wrong.

While mankind has not yet harnessed human ingenuity to create a technology that releases existentially destructive power, Bostrom believes it is possible that it may in the future.

Human civilization has yet to produce a technology with such horrific implications that mankind could collectively forget about it.

The objective would be to go on a technical path that is safe, includes global collaboration, and is long-term.

To argue for the prospect of machine superintelligence, Bostrom employs the metaphor of altered brain complexity in the development of humans from apes, which took just a few hundred thousand generations.

Artificial systems that use machine learning (that is, algorithms that learn) are no longer constrained to a single area.

He also points out that computers process information at a far faster pace than human neurons.

Humans will eventually rely on super intelligent robots in the same manner that chimps presently rely on humans for their ultimate survival, according to Bostrom, even in the wild.

By establishing a powerful optimizing process with a poorly stated purpose, super intelligent computers have the potential to cause devastation, or possibly an extinction-level catastrophe.

By subverting humanity to the programmed purpose, a superintelligence may even foresee a human response.

Bostrom recognizes that there are certain algorithmic techniques used by humans that computer scientists do not yet understand.

As they engage in machine learning, he believes it is critical for artificial intelligences to understand human values.

On this point, Bostrom is drawing inspiration from artificial intelligence theorist Eliezer Yudkowsky's concept of "coherent extrapolated volition"—also known as "friendly AI"—which is akin to what is currently accessible in human good will, civil society, and institutions.

A superintelligence should seek to provide pleasure and joy to all of humanity, and it may even make difficult choices that benefit the whole community rather than the individual.

In 2015, Bostrom, along with Stephen Hawking, Elon Musk, Max Tegmark, and many other top AI researchers, published "An Open Letter on Artificial Intelligence" on the Future of Life Institute website, calling for artificial intelligence research that maximizes the benefits to humanity while minimizing "potential pitfalls." Transhumanism is a philosophy or belief in the technological extension and augmentation of the human species' physical, sensory, and cognitive capacity.

In 1998, Bostrom and colleague philosopher David Pearce founded the World Transhumanist Association, now known as Humanity+, to address some of the societal hurdles to the adoption and use of new transhumanist technologies by people of all socioeconomic strata.

Bostrom has said that he is not interested in defending technology, but rather in using modern technologies to address real-world problems and improve people's lives.

Bostrom is particularly concerned in the ethical implications of human enhancement and the long-term implications of major technological changes in human nature.

He claims that transhumanist ideas may be found throughout history and throughout cultures, as shown by ancient quests such as the Gilgamesh Epic and historical hunts for the Fountain of Youth and the Elixir of Immortality.

The transhumanist idea, then, may be regarded fairly ancient, with modern representations in disciplines like artificial intelligence and gene editing.

Bostrom takes a stand against the emergence of strong transhumanist instruments as an activist.

He expects that politicians may act with foresight and command the sequencing of technical breakthroughs in order to decrease the danger of future applications and human extinction.

He believes that everyone should have the chance to become transhuman or posthuman (have capacities beyond human nature and intelligence).

For Bostrom, success would require a worldwide commitment to global security and continued technological progress, as well as widespread access to the benefits of technologies (cryonics, mind uploading, anti-aging drugs, life extension regimens), which hold the most promise for transhumanist change in our lifetime.

Bostrom, however cautious, rejects conventional humility, pointing out that humans have a long history of dealing with potentially catastrophic dangers.

In such things, he is a strong supporter of "individual choice," as well as "morphological freedom," or the ability to transform or reengineer one's body to fulfill specific wishes and requirements.


~ Jai Krishna Ponnappan

You may also want to read more about Artificial Intelligence here.




See also: 

Superintelligence; Technological Singularity.


Further Reading

Bostrom, Nick. 2003. “Are You Living in a Computer Simulation?” Philosophical Quarterly 53, no. 211: 243–55.

Bostrom, Nick. 2005. “A History of Transhumanist Thought.” Journal of Evolution and Technology 14, no. 1: 1–25.

Bostrom, Nick, ed. 2008. Global Catastrophic Risks. Oxford, UK: Oxford University Press.

Bostrom, Nick. 2014. Superintelligence: Paths, Dangers, Strategies. Oxford, UK: Oxford University Press.

Savulescu, Julian, and Nick Bostrom, eds. 2009. Human Enhancement. Oxford, UK: Oxford University Press.

What Is Artificial General Intelligence?

Artificial General Intelligence (AGI) is defined as the software representation of generalized human cognitive capacities that enables the ...