Artificial Intelligence - Knowledge Engineering In Expert Systems.

  


Knowledge engineering (KE) is an artificial intelligence subject that aims to incorporate expert knowledge into a formal automated programming system in such a manner that the latter can produce the same or comparable results in problem solving as human experts when working with the same data set.

Knowledge engineering, more precisely, is a discipline that develops methodologies for constructing large knowledge-based systems (KBS), also known as expert systems, using appropriate methods, models, tools, and languages.

For knowledge elicitation, modern knowledge engineering uses the knowledge acquisition and documentation structuring (KADS) approach; hence, the development of knowledge-based systems is considered a modeling effort (i.e., knowledge engineer ing builds up computer models).

It's challenging to codify the knowledge acquisition process since human specialists' knowledge is a combination of skills, experience, and formal knowledge.

As a result, rather than directly transferring knowledge from human experts to the programming system, the experts' knowledge is modeled.

Simultaneously, direct simulation of the entire cognitive process of experts is extremely difficult.

Designed computer models are expected to achieve targets similar to experts’ results doing problem solving in the domain rather than matching the cognitive capabilities of the experts.

As a result, knowledge engineering focuses on modeling and problem-solving methods (PSM) that are independent of various representation formalisms (production rules, frames, etc.).

The problem solving method is a key component of knowledge engineering, and it refers to the knowledge-level specification of a reasoning pattern that can be used to complete a knowledge-intensive task.

Each problem-solving technique is a pattern that offers template structures for addressing a specific issue.

The terms "diagnostic," "classification," and "configuration" are often used to categorize problem-solving strategies based on their topology.

PSM "Cover-and-Differentiate" for diagnostic tasks and PSM "Propose-and-Reverse" for parametric design tasks are two examples.

Any problem-solving approach is predicated on the notion that the suggested method's logical adequacy corresponds to the computational tractability of the system implementation based on it.

The PSM heuristic classification—an inference pattern that defines the behavior of knowledge-based systems in terms of objectives and knowledge required to attain these goals—is often used in early instances of expert systems.

Inference actions and knowledge roles, as well as their relationships, are covered by this problem-solving strategy.

The relationships specify how domain knowledge is used in each interference action.

Observables, abstract observables, solution abstractions, and solution are the knowledge roles, while the interference action might be abstract, heuristic match, or refine.

The PSM heuristic classification requires a hierarchically organized model of observables as well as answers for "abstract" and "refine," making it suited for static domain knowledge acquisition.

In the late 1980s, knowledge engineering modeling methodologies shifted toward role limiting methods (RLM) and generic tasks (GT).

The idea of the "knowledge role" is utilized in role-limiting methods to specify how specific domain knowledge is employed in the problem-solving process.

RLM creates a wrapper over PSM by explaining it in broad terms with the purpose of reusing it.

However, since this technique only covers a single instance of PSM, it is ineffective for issues that need the employment of several methods.

Configurable role limiting methods (CRLM) are an extension of the role limiting methods concept, offering a predetermined collection of RLMs as well as a fixed scheme of knowledge categories.

Each member method may be used on a distinct subset of a job, but introducing a new method is challenging since it necessitates changes to established knowledge categories.

The generic task method includes a predefined scheme of knowledge kinds and an inference mechanism, as well as a general description of input and output.

The generic task is based on the "strong interaction problem hypothesis," which claims that domain knowledge's structure and representation may be totally defined by its application.

Each generic job makes use of information and employs control mechanisms tailored to that knowledge.

Because the control techniques are more domain-specific, the actual knowledge acquisition employed in GT is more precise in terms of problem-solving step descriptions.

As a result, the design of specialized knowledge-based systems may be thought of as the instantiation of specified knowledge categories using domain-specific words.

The downside of GT is that it may not be possible to integrate a specified problem-solving approach with the optimum problem-solving strategy required to complete the assignment.

The task structure (TS) approach seeks to address GT's shortcomings by distinguishing between the job and the technique employed to complete it.

As a result, every task-structure based on that method postulates how the issue might be solved using a collection of generic tasks, as well as what knowledge has to be acquired or produced for these tasks.

Because of the requirement for several models, modeling frameworks were created to meet various parts of knowledge engineering methodologies.

The organizational model, task model, agent model, communication model, expertise model, and design model are the models of the most common engineering CommonKADS structure (which depends on KADS).

The organizational model explains the structure as well as the tasks that each unit performs.

The task model describes tasks in a hierarchical order.

Each agent's skills in task execution are specified by the agent model.

The communication model specifies how agents interact with one another.

The expertise model, which employs numerous layers and focuses on representing domain-specific knowledge (domain layer) as well as inference for the reasoning process, is the most significant model (inference layer).

A task layer is also supported by the expertise model.

The latter is concerned with task decomposition.

The system architecture and computational mechanisms used to make the inference are described in the design model.

In CommonKADS, there is a clear distinction between domain-specific knowledge and generic problem-solving techniques, allowing various problems to be addressed by constructing a new instance of the domain layer and utilizing the PSM on a different domain.

Several libraries of problem-solving algorithms are now available for use in development.

They are distinguished by their key characteristics: if the library was created for a specific goal or has a larger reach; whether the library is formal, informal, or implemented; whether the library uses fine or coarse grained PSM; and, lastly, the library's size.

Recently, some research has been carried out with the goal of unifying existing libraries by offering adapters that convert task-neutral PSM to task-specific PSM.

The MIKE (model-based and incremental knowledge engineering) method, which proposes integrating semiformal and formal specification and prototyping into the framework, grew out of the creation of CommonKADS.

As a result, MIKE divides the entire process of developing knowledge-based systems into a number of sub-activities, each of which focuses on a different aspect of system development.

The Protégé method makes use of PSMs and ontologies, with an ontology being defined as an explicit statement of a common conceptualization that holds in a certain situation.

Although the ontologies used in Protégé might be of any form, the ones utilized are domain ontologies, which describe the common conceptualization of a domain, and method ontologies, which specify the ideas and relations used by problem solving techniques.

In addition to problem-solving techniques, the development of knowledge-based systems necessitates the creation of particular languages capable of defining the information needed by the system as well as the reasoning process that will use that knowledge.

The purpose of such languages is to give a clear and formal foundation for expressing knowledge models.

Furthermore, some of these formal languages may be executable, allowing simulation of knowledge model behavior on specified input data.

The knowledge was directly encoded in rule-based implementation languages in the early years.

This resulted in a slew of issues, including the impossibility to provide some forms of information, the difficulty to assure consistent representation of various types of knowledge, and a lack of specifics.

Modern approaches to language development aim to target and formalize the conceptual models of knowledge-based systems, allowing users to precisely define the goals and process for obtaining models, as well as the functionality of interface actions and accurate semantics of the various domain knowledge elements.

The majority of these epistemological languages include primitives like constants, functions, and predicates, as well as certain mathematical operations.

Object-oriented or frame-based languages, for example, define a wide range of modeling primitives such as objects and classes.

KARL, (ML)2, and DESIRE are the most common examples of specific languages.

KARL is a language that employs a Horn logic variation.

It was created as part of the MIKE project and combines two forms of logic to target the KADS expertise model: L-KARL and P-KARL.

The L-KARL is a frame logic version that may be used in inference and domain layers.

It's a mix of first-order logic and semantic data modeling primitives, in fact.

P-KARL is a task layer specification language that is also a dynamic logic in some versions.

For KADS expertise models, (ML)2 is a formalization language.

The language mixes first-order extended logic for domain layer definition, first-order meta logic for inference layer specification, and quantified dynamic logic for task layer specification.

The concept of compositional architecture is used in DESIRE (the design and specification of interconnected reasoning components).

It specifies the dynamic reasoning process using temporal logics.

Transactions describe the interaction between components in knowl edge-based systems, and control flow between any two objects is specified as a set of control rules.

A metadata description is attached to each item.

In a declarative approach, the meta level specifies the dynamic features of the object level.

The need to design large knowledge-based systems prompted the development of knowledge engineering, which entails creating a computer model with the same problem-solving capabilities as human experts.

Knowledge engineering views knowledge-based systems as operational systems that should display some desirable behavior, and provides modeling methodologies, tools, and languages to construct such systems.




Jai Krishna Ponnappan


You may also want to read more about Artificial Intelligence here.



See also: 


Clinical Decision Support Systems; Expert Systems; INTERNIST-I and QMR; MOLGEN; MYCIN.



Further Reading:


Schreiber, Guus. 2008. “Knowledge Engineering.” In Foundations of Artificial Intelligence, vol. 3, edited by Frank van Harmelen, Vladimir Lifschitz, and Bruce Porter, 929–46. Amsterdam: Elsevier.

Studer, Rudi, V. Richard Benjamins, and Dieter Fensel. 1998. “Knowledge Engineering: Principles and Methods.” Data & Knowledge Engineering 25, no. 1–2 (March): 161–97.

Studer, Rudi, Dieter Fensel, Stefan Decker, and V. Richard Benjamins. 1999. “Knowledge Engineering: Survey and Future Directions.” In XPS 99: German Conference on Knowledge-Based Systems, edited by Frank Puppe, 1–23. Berlin: Springer.



What Is Artificial General Intelligence?

Artificial General Intelligence (AGI) is defined as the software representation of generalized human cognitive capacities that enables the ...