Artificial Intelligence - What Is Automated Multiphasic Health Testing?


Automated Multiphasic Health Testing (AMHT) is an early medical computer system for screening large numbers of ill or healthy people in a short period of time semiautomatically.

Lester Breslow, a public health official, pioneered the AMHT idea in 1948, integrating typical automated medical questionnaires with mass screening procedures for groups of individuals being examined for specific illnesses like diabetes, TB, or heart disease.

Multiphasic health testing involves integrating a number of tests into a single package to screen a group of individuals for different diseases, illnesses, or injuries.

AMHT might be related to regular physical exams or health programs.

Humans are subjected to examinations similar to those used in state inspections of autos.

In other words, AMHT approaches preventative medical care in a factory-like manner.

In the 1950s, Automated Multiphasic Health Testing (AMHT) became popular, allowing health care networks to swiftly screen new candidates.

In 1951, the Kaiser Foundation Health Plan began offering a Multiphasic Health Checkup to its members.

Morris F. Collen, an electrical engineer and physician, was the program's director from 1961 until 1979.

The "Kaiser Checkup," which used an IBM 1440 computer to crunch data from patient interviews, lab testing, and clinical findings, looked for undetected illnesses and made treatment suggestions.

Patients hand-sorted 200 prepunched cards with printed questions requiring "yes" or "no" replies at the questionnaire station (one of twenty such stations).

The computer shuffled the cards and used a probability ratio test devised by Jerzy Neyman, a well-known statistician.

Electrocardiographic, spirographic, and ballistocardiographic medical data were also captured by Kaiser's computer system.

A Kaiser Checkup takes around two and a half hours to complete.

BUPA in the United Kingdom and a nationwide program created by the Swedish government are two examples of similar AMHT initiatives that have been introduced in other countries.

The popularity of computerized health testing has fallen in recent decades.

There are issues concerning privacy as well as financial considerations.

Working with AMHT, doctors and computer scientists learned that the body typically masks symptoms.

A sick person may pass through diagnostic devices successfully one day and then die the next.

Electronic medical recordkeeping, on the other hand, has succeeded where AMHT has failed.

Without physical handling or duplication, records may be sent, modified, and returned.

Multiple health providers may utilize patient charts at the same time.

Uniform data input ensures readability and consistency in structure.

Summary reports may now be generated automatically from the information gathered in individual electronic medical records using electronic medical records software.

These "big data" reports make it possible to monitor changes in medical practice as well as evaluate results over time.

Summary reports also enable cross-patient analysis, a detailed algorithmic examination of prognoses by patient groups, and the identification of risk factors prior to the need for therapy.

The application of deep learning algorithms to medical data has sparked a surge of interest in so-called cognitive computing for health care.

IBM's Watson system and Google DeepMind Health, two current leaders, promise changes in eye illness and cancer detection and treatment.

Also unveiled by IBM is the Medical Sieve system, which analyzes both radiological images and textual documents.

Clinical Decision Support Systems, Computer-Assisted Diagnosis, INTERNIST-I, and QMR are all examples of clinical decision support systems.

~ Jai Krishna Ponnappan

You may also want to read more about Artificial Intelligence here.

See also: 

Clinical Decision Support Systems; Computer-Assisted Diagnosis; INTERNIST-I and QMR.

Further Reading

Ayers, W. R., H. M. Hochberg, and C. A. Caceres. 1969. “Automated Multiphasic Health Testing.” Public Health Reports 84, no. 7 (July): 582–84.

Bleich, Howard L. 1994. “The Kaiser Permanente Health Plan, Dr. Morris F. Collen, and Automated Multiphasic Testing.” MD Computing 11, no. 3 (May–June): 136–39.

Collen, Morris F. 1965. “Multiphasic Screening as a Diagnostic Method in Preventive Medicine.” Methods of Information in Medicine 4, no. 2 (June): 71–74.

Collen, Morris F. 1988. “History of the Kaiser Permanente Medical Care Program.” Inter￾viewed by Sally Smith Hughes. Berkeley: Regional Oral History Office, Bancroft Library, University of California.

Mesko, Bertalan. 2017. “The Role of Artificial Intelligence in Precision Medicine.” Expert Review of Precision Medicine and Drug Development 2, no. 5 (September): 239–41.

Roberts, N., L. Gitman, L. J. Warshaw, R. A. Bruce, J. Stamler, and C. A. Caceres. 1969. “Conference on Automated Multiphasic Health Screening: Panel Discussion, Morning Session.” Bulletin of the New York Academy of Medicine 45, no. 12 (December): 1326–37.

What Is Artificial General Intelligence?

Artificial General Intelligence (AGI) is defined as the software representation of generalized human cognitive capacities that enables the ...