Scientific and Space Enthusiasm.

So much for the notion that spaceflight activities can be justified by their ostensible function in motivating kids to pursue STEM degrees. 

What about the other half of the educational inspiration argument, namely, that space exploration aids in the fulfillment of a responsibility to improve the general public's scientific literacy? 

Consider the following paragraph from Carl Sagan's Pale Blue Dot as an example of such an argument: Exploratory spaceflight exposes the public to scientific concepts, scientific thinking, and scientific language. 

It raises the standard of intellectual investigation in general. 

The notion that we've finally comprehended something no one has ever grasped before— that thrill, felt by almost everyone but particularly strong by the scientists involved— spreads through society, bounces off walls, and comes back at us. 

It motivates us to tackle challenges in other areas that have never been addressed before. 

It boosts the society's overall feeling of optimism. 

It lends credence to the kind of critical thinking that is sorely required if we are to tackle hitherto insurmountable societal problems. 

It contributes to the development of a new generation of scientists. 

The more science in the media—especially if methods, findings, and consequences are described—the better society, I think, will be. 

People all around the world are hungry for knowledge. 

Unfortunately, there are practically no statistics that directly relate to the impact of space exploration on the general public's scientific knowledge. 

As with the influence of spaceflight on STEM degree conferral rates, we should at least postpone judgment on the efficacy of spaceflight's ability to enhance public scientific literacy, and acknowledge that there is no obvious foundation for a duty to utilize spaceflight for such a goal. 

Nonetheless, I think a greater warning is necessary in this instance. 

I shall present a reduction of the argument that spaceflight has a beneficial impact on the general public's scientific literacy. 

Assume that spaceflight activities and scientific knowledge have a positive causal connection. 

As a result, we can anticipate the degree of scientific literacy to fluctuate over time as the breadth of spaceflight operations expands. 

What can be shown is that there has been no such covariation, implying that there is no obvious causal connection between spaceflight activities and scientific knowledge. 

My reduction is written as follows: 

1. Support for space exploration is linked to scientific knowledge. 

2. Public support for space exploration has been relatively constant throughout time. 

3. The activities of spaceflight have changed dramatically throughout time. 

4. As a result, spaceflight operations are unrelated to public support for space exploration. 

5. As a result, spaceflight activities are unrelated to scientific literacy. 

As a result, spaceflight activities are not linked to scientific literacy in any way. 

All that's left is to prove the premises of this argument are correct. 

Consider the data for (1), which suggests that scientific knowledge is linked to support for space exploration. 

While college students claim to know little about U.S. 

space exploration, they tend to have favorable views about NASA, according to a small-scale survey of undergraduates at Syracuse University. 

Their scientific literacy levels and public support for space exploration are linked, with political science and health science degrees showing the strongest correlation. 

It's possible that the more knowledgeable a person is about space science, the more likely he or she is to become an informed citizen who engages in public debate and is therefore more hopeful and supportive of space research. 

Cook, Druger, and Ploutz-Snyder 's sample is likely typical of the American population in terms of views about space exploration, according to Fran├žois Nadeau's analysis of data from the General Social Survey (GSS): 

If Americans are better educated about and appreciate organized science, they are more inclined to support expenditure on space exploration. 

This shows that Cook and colleagues' recent results apply not just to a small sample of undergraduate students at Syracuse University, but also to the general population in the United States. 

Scientific knowledge seems to assist many Americans compensate for a lack of elite signals in society when determining their spending choices on space exploration. 

Furthermore, as more college-level scientific courses are completed, Americans tend to prefer greater expenditure. 

s a result, there is evidence that scientific knowledge is linked to support for space exploration. 

Second, examine the data for (2), which shows that public support for space exploration has been relatively constant throughout time. 

For a government agency, NASA has always had strong public support. 

According to a 2015 Pew Research Survey, 68 percent of Americans viewed NASA favorably, second only to the Centers for Disease Control and Prevention, which had a 70 percent positive rating. 

Meanwhile, according to a series of Gallup Polls conducted between 1990 and 2007, an average of 57.6% of Americans believe NASA is doing an outstanding or good job, while 28.5 percent believe NASA is merely doing a fair job, and just 7.8% believe NASA is doing a bad job. 

Scientific literacy has remained reasonably constant during the same time span. 

Finally, consider that NASA's budget decreased from about 1.0 percent of the federal budget to about 0.5 percent of the federal budget during the same period, supporting (3). 

Since the scope of spaceflight activities (as measured by NASA’s funding) does not correlate with the public’s approval of NASA, whereas one’s level of scientific literacy does correlate with one’s approval of NASA, it would be difficult to maintain that the scope of spaceflight activities has a salient impact on the level of scientific literacy among the general public. 

Spaceflight activities thus are not effective implements for inspiring the general public to become more scientifically literate, and consequently, we have no obligation to use spaceflight to promote increases in the scientific literacy of the general public. 

Things only get muddier when examining support for space science relative to the more general issue of support for science. 

The common refrain among space advocates that space topics are inherently exciting is not supported by public opinion regarding science funding. 

A comparison of the GSS natsci,11 natspac,12 and natspacy13 data sets from between 2002 and 2016 reveals that roughly 38 percent of Americans felt too little was being spent on scientific research, while only 17 percent felt too little was being spent on space exploration. 

Meanwhile, about 12 percent felt that too much was being spent on scientific research, while 33 percent felt too much was being spent on space exploration. 

This suggests that Americans are, on average, less sanguine about space exploration than they are about scientific research in general. 

Relevant here is a recent study which found that respondents tend to overestimate science’s share of the federal budget, and that after presented with correct information, there is a significant increase in the percentage of individuals responding that science funding should be increased (Goldfarb and Kriner 2017). 

This corroborates a suspicion of Alan Steinberg’s (2013) that opinions about spaceflight spending are influenced by misperceptions of, and can be improved by accurate communication about, the actual level of spaceflight spending. 

Although there is no reason to believe that spaceflight activities are efficient predictors of scientific literacy, maybe we might achieve greater support for spaceflight (and for science more broadly) by improving overall scientific literacy. 

The issue here is that, although scientific knowledge and support for research are positively linked, there are many other important factors: 

  • The route from scientific knowledge to favorable views toward science or support for research is not always obvious. 

Knowledge impacts various sections in a community differently based on a number of variables, including degrees of religion, political predispositions and worldviews, and respect to scientific authority. 

These trends appear to differ depending on the particular scientific problem being investigated and the society in which the data is gathered. 

Thus, a rise in scientific literacy, particularly targeted to a single area of research, would not offer a solid assurance of an increase in support for that domain of science.

~ Jai Krishna Ponnappan 

You may also want to read more about Space Exploration, Space Missions and Systems here.

What Is Artificial General Intelligence?

Artificial General Intelligence (AGI) is defined as the software representation of generalized human cognitive capacities that enables the ...